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Abstract. We present a ‘new generation’ model for high energy proton–proton ‘soft’ interactions. It allows
for a full set of multipomeron vertices as well as for including multichannel eikonal scattering. It describes
the behaviour of the proton–proton total, σtot, and elastic, dσel/dt, cross sections together with those for
low- and high-mass proton dissociation. Although the model contains a comprehensive set of multipomeron
diagrams, it has a simple partonic interpretation. Including the more complicated multipomeron vertices
reduces the absorptive effects as compared to the predictions in which only the triple-pomeron vertex is con-
sidered. Tuning the model to describe the available ‘soft’ data in the CERN ISR–tevatron energy range, we
predict the total, elastic, single- and double-diffractive dissociation cross sections at the LHC energy. An
inescapable consequence of including multichannel eikonal and multipomeron effects is that the total cross
section is expected to be lower than before: indeed, we find σtot � 90 mb at the LHC energy. We also present
differential forms of the cross sections. In addition, we calculate soft diffractive central production.

1 Motivation

It is essential to have a good model for the soft interac-
tions of hadrons at high energies to, in particular, predict
at the LHC, (i) the structure of underlying events, (ii) the
value of the total cross section, σtot and the behaviour of
the elastic cross section, dσel/dt, and (iii) the probability
of diffractive dissociation. Moreover, it is extremely im-
portant to understand the asymptotic behaviour of high
energy interactions in a partonic framework. This will give
the possibility of simulating the underlying events using
a Monte Carlo generator based on a theoretically justified
description of soft interactions. In addition, we need such
a model to account for the effects of the underlying event
in high energy hard interactions and to calculate the sur-
vival factors of rapidity gaps in exclusive and other hard
diffractive processes. Finally it is crucial to have a good
understanding of the spectra of leading nucleons, that is,
of the diffractive dissociation cross section, in order to de-
scribe extensive air showers and to interpret the highest
energy cosmic rays.

2 Overview of existing descriptions
of soft interactions

First we have the very simple Donnachie–Landshoff par-
ametrisation [1] of the high energy elastic amplitude, which
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is described in terms of simple poles in the complex angu-
lar momentum plane: namely the pomeron and secondary
Regge poles. The latter give a negligible contribution at
Tevatron and LHC energies. However, this parametrisation
says nothing about the distribution of secondary particles
in the underlying event. Moreover, already at the LHC en-
ergy,

√
s= 14 TeV, the amplitude A(b, s) violates the black

disc unitarity limit at small impact parameters b→ 0.
We need to satisfy, at least, the two-particle s-channel

unitarity relation, in order to respect the Froissart bound,
and to describe the elastic cross section, which is about
20%–25% of the total cross section in the Tevatron to LHC
energy range. This leads to the eikonal form of the elas-
tic amplitude, see (6) in Sect. 3. To allow for the possibil-
ity of proton excitations we need to consider multichannel
(say n-channel) eikonal models that include rescattering
in the i= 1, . . . , n diffractive eigenstates [2–6]. We will re-
view the eikonal approach in the next section. At present
one- and two-channel eikonal models are used to predict
the LHC cross sections [7–10]. A one-channel approach
was used in [9, 11, 12], and two-channel eikonals were used
in [7, 8, 10, 13, 14].
However, even a multichannel eikonal is unable to ac-

count for diffractive dissociation into high-mass states.
These processes are usually described in terms of Regge
theory with the help of the triple-pomeron vertex. The
problem is that, after we allow for the low values of the
probability, S2, that the rapidity gaps survive the eikonal
rescattering, the value of the triple-pomeron coupling, g3IP ,
needed to describe the data (σ ∼ S2g3IP ), becomes rather
large; namely g3IP � gN/3 [15], where gN is the nucleon–
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pomeron coupling.1 As a result we cannot neglect more
complicated multipomeron diagrams containing a large
number of triple-pomeron couplings. A specific set of such
diagrams, known as “fan” diagrams, have been summed
in [23–29]. The selection of these fan diagrams is justi-
fied for proton–nuclei interactions or deep inelastic scatter-
ing, that is, when the size of the incoming object is much
smaller than the size of the “target”. In other words, we
account for the multiple interactions with the large size
“target”, but not with the “beam” particle; see Fig. 1. The
summation of these diagrams leads to saturation, that is,
the amplitude T → constant at large s. The problem is
that the fan diagram approximation can only be used to
describe the beginning of the approach to saturation. Once
we are near saturation one is not justified to neglect more
complicated multipomeron graphs.2

A good description of CERN ISR–Tevatron data on
σtot, dσel/dt, was obtained in [10], where the high-mass
diffractive dissociation was described phenomenologically
and added to the two-channel eikonal. That is, high-mass
diffraction was not generated from the underlying theory
but was included in terms of the leading triple-pomeron di-
agram, and then this contribution was added to the total
proton opacity Ω(b).
The shortcomings of the existing approaches to de-

scribe soft interactions can be summarised as follows. First,
it is not clear, a priori, how the results will change in
going from a two- to a three- (or more-) channel eikonal
model. Furthermore, we do not know how the results de-
pend on the size (that is, the form factor) of each diffractive
eigenstate3 i. Moreover, since g3IP is not small, we cannot
neglect the more complicated multipomeron interactions.4

Here we will consider a three-channel eikonal model.
We will assume that the cross section of each eigenstate,
σi (that is, the coupling of the eigenstate to the pomeron)
is proportional to the square of the transverse size of the
component, R2i . This form is motivated, either by leading-
order QCD, where σ ∼ α2SR

2, or by the assumption that
each eigenstate has an opacity of the same shape with the
same value of Ωi(b= 0), such that the integrated coupling∫
d2bΩi ∝ R2i . Another possibility, which we will analyse,
is to use the same form factor, that is, the same size, for
each component, as in [10].

1 Earlier estimates [5, 16–18], which do not account for the

rescattering factor S2, give g3IP � gN/10. However, as dis-
cussed in [19–22], when we account for more complicated en-
hanced diagrams we need a larger value of the bare triple-
pomeron coupling.
2 A more general, but still incomplete, set of multipomeron
graphs generated by g3IP was considered in [30–33], and more
recently in [34–37]; note that in [34–36], besides g3IP , more
complicated multipomeron vertices were considered.
3 In [10] both eigenstates are assumed to have the same size,
and in the latest versions of the Tel-Aviv model [13, 14] another
extreme is considered – the size of the second component is
zero.
4 Here we seek a model for the high energy pp interaction
and therefore we neglect secondary reggeon contributions and
include only the pomeron.

Fig. 1. A typical multipomeron fan diagram contributing to
the interaction between a small size beam particle and a large
size target particle

By allowing for a different size for each component,
we have the possibility to introduce, and to calculate the
different partonic composition of each diffractive eigen-
state. For instance, for a smaller size component, the evo-
lution will start at a larger scale µ, and so there will be
less gluons and other low x partons radiated during the
evolution.

3 Eikonal model for diffractive scattering

Let us delay the inclusion of high-mass diffractive dis-
sociation for the moment in order to first introduce the
eikonal description of soft proton–proton interactions.
This will allow low-mass diffractive excitations to be in-
cluded. We will then have to describe how to incorporate
the important contributions made by high-mass single-
and double-proton dissociation. The high-mass dissocia-
tions have a crucial effect on the predictions for the LHC.
Unitarity plays a pivotal role in diffractive processes.

The total cross section is intimately related to the elastic
scattering amplitude and the scattering into inelastic final
states via s-channel unitarity, SS† = I, or

discT ≡ T −T † = iT †T , (1)

with S = I+ iT .

3.1 Single-channel eikonal model

First, we briefly recall the relevant features of the single-
channel eikonal model. That is we focus on elastic unitar-
ity. Then “discT” is simply the discontinuity of T across
the two-particle s-channel cut. At high energies we have
a sizeable inelastic component. The s-channel unitarity re-
lation is diagonal in the impact parameter b basis, and it
may be written

2 ImTel(s, b) = |Tel(s, b)|
2+Ginel(s, b) , (2)

with

σtot = 2

∫
d2b ImTel(s, b) , (3)

σel =

∫
d2b|Tel(s, b)|

2 , (4)

σinel =

∫
d2b
[
2 ImTel(s, b)−|Tel(s, b)|

2
]
. (5)
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These equations are satisfied by

ImTel(s, b) = 1− e
−Ω/2 , (6)

σel(s, b) = (1− e
−Ω/2)2 , (7)

σinel(s, b) = 1− e
−Ω , (8)

where Ω(s, b)≥ 0 is called the opacity (optical density) or
eikonal.5 From (8), we see that exp(−Ω(s, b)) is the proba-
bility that no inelastic scattering occurs.
The well known example of scattering by a black disc,

with ImTel= 1 for b <R, gives σel = σinel = πR
2 and σtot =

2πR2. In general, we see that the absorption of the initial
wave due to the existence of many inelastic channels leads,
via s-channel unitarity, to diffractive dissociation.

3.2 Inclusion of low-mass diffractive dissociation

So much for elastic diffraction. Now we turn to inelastic
diffraction, which is a consequence of the internal structure
of hadrons. This is simplest to describe at high energies,
where the lifetimeof thefluctuationsofa fasthadron is large,
τ ∼ E/m2, and during these time intervals the correspond-
ing Fock states can be considered as ‘frozen’. Each hadronic
constituent can undergo scattering and thus destroy the co-
herence of the fluctuations. As a consequence, the outgoing
superposition of states will be different from the incident
particle and will most likely contain multiparticle states, so
wewill have inelastic, as well as elastic, diffraction.
To discuss inelastic diffraction, it is convenient to fol-

low Good and Walker [2–4], and to introduce states φk
that diagonalise the T -matrix. Such eigenstates only un-
dergo elastic scattering. Since there are no off-diagonal
transitions,

〈φj |T |φk〉= 0 , j 
= k , (9)

a state k cannot diffractively dissociate into a state j. We
have noted that this is not, in general, true for hadronic
states, which are not eigenstates of the S-matrix, that is,
of T . To account for the internal structure of the hadronic
states, we have to enlarge the set of intermediate states,
from just the single elastic channel, and to introduce a mul-
tichannel eikonal. We will consider such an example below,
but first let us express the cross section in terms of the
probability amplitudes Fk of the hadronic process proceed-
ing via the various diffractive eigenstates6 φk.
Let us denote the orthogonal matrix that diagonalises

ImT by a, so that

ImT = aFaT , 〈φj |F |φk〉= Fkδjk . (10)

5 Sometimes Ω/2 is called the eikonal; for simplicity we
omit below the real part of Tel. At high energies, the ratio
ReTel/ ImTel is small and can be evaluated via a dispersion
relation.
6 The exponent exp(−Ωk) describes the probability that the
diffractive eigenstate φk is not absorbed in the interaction.
Later we will see that the rapidity gap survival factors, S2, can
be described in terms of such eikonal exponents.

Now consider the diffractive dissociation of an arbitrary in-
coming state

|j〉=
∑

k

ajk|φk〉 . (11)

The elastic scattering amplitude for this state satisfies

〈j| ImT |j〉=
∑

k

|ajk|
2Fk = 〈F 〉 , (12)

where Fk ≡ 〈φk|F |φk〉 and where the brackets of 〈F 〉 mean
that we take the average of F over the initial probability
distribution of diffractive eigenstates. After the diffractive
scattering described by Tfj , the final state |f〉 will, in gen-
eral, be a different superposition of eigenstates from that of
|j〉, which was shown in (11). At high energies we may neg-
lect the real parts of the diffractive amplitudes. Then, for
cross sections at a given impact parameter b, we have

dσtot
d2b

= 2 Im〈j|T |j〉= 2
∑

k

|ajk|
2Fk = 2〈F 〉 ,

dσel
d2b
= |〈j|T |j〉|2 =

(∑

k

|ajk|
2Fk

)2
= 〈F 〉2 ,

dσel+SD
d2b

=
∑

k

|〈φk|T |j〉|
2 =
∑

k

|ajk|
2F 2k = 〈F

2〉 .

(13)

It follows that the cross section for the single-diffractive
dissociation of a proton,

dσSD
d2b

= 〈F 2〉− 〈F 〉2 , (14)

is given by the statistical dispersion in the absorption prob-
abilities of the diffractive eigenstates. Here the average is
taken over the components k of the incoming proton that
dissociates. If the averages are taken over the components
of both of the incoming particles, then in (14) we must in-
troduce a second index on F , that is Fik, and sum over k
and i. In this case the sum is the cross section for single and
double dissociation.
Note that if all the components φk of the incom-

ing diffractive state |j〉 were absorbed equally, then the
diffracted superposition would be proportional to the inci-
dent one and the inelastic diffraction would be zero. Thus
if, at very high energies, the amplitudes Fk at small im-
pact parameters are equal to the black disk limit, Fk = 1,
then diffractive production will be equal to zero in this
impact parameter domain and so will only occur in the pe-
ripheral b region. A similar behaviour already occurs in pp
(and pp̄) interactions at Tevatron energies. Hence the im-
pact parameter structure of inelastic and elastic diffraction
is drastically different in the presence of strong s-channel
unitarity effects. The elastic amplitude originates mainly
from the centre of the disk (that is, from small b), while
dissociation comes from the periphery. Hence it is import-
ant to pay special attention to the periphery of the proton,
in impact parameter space, b-space. First, large values of b
are responsible for the small t behaviour of the amplitude.
Second, the large b region, where the optical density (or
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opacity), Ω(b), becomes small, gives the major contribu-
tion to the survival probability of the rapidity gaps.
It is clear that if we allow for the possibility of diffrac-

tive excitation, then we will enlarge the absorptive ef-
fect caused by the eikonal. As a consequence the re-
sults obtained by a one- and two-channel eikonal fit will
be substantially different. However, once we fix the dis-
persion, (14), that is, once we fix the ratio7 σSD(low-
mass)/σel, it turns out that the inclusion of a third channel
will not practically change the result. Of course, with
a three-channel eikonal we have too many parameters. We
will therefore consider an extreme case, one in which each
channel has the same weight; ai = 1/

√
3 with i = 1, 2, 3.

Otherwise the contribution of the eigenstate with the
smallest weight will be less visible and the situation will be
close to the two-channel model. Next, we fix the value of
the dispersion, (14),

〈
β2i
〉
−〈βi〉

2 = (1+γ2)〈βi〉
2
. (15)

As a result the total probability of dissociation (in the limit
of small opacity, Ω� 1),

σlowMSD /σel = 2γ
2 , (16)

will be the same in the two- and three-channel cases. Here
βi is the φi–pomeron coupling, so the amplitude Fi is pro-
portional to βi; the factor of 2 in (16) accounts for low-mass
excitations of both the colliding beam particles.
Note that to describe the elastic scattering data in

terms of a multichannel eikonal model, we have to increase
the size of the intercept, αIP (0), and to reduce the slope
α′, of the bare pomeron trajectory, in comparison with the
naive Donnachie–Landshoff amplitude, in order to com-
pensate for the absorptive effects of multichannel eikonal
rescattering [5, 22, 38].
It was checked that the effects of the pion loop in the

bare pomeron trajectory [10] can be mimicked by increas-
ing the value of α′. Thus, if we do not want 1% accuracy,
we can replace our previous two-channel description [10] of
the data by a simpler two-channel fit, which is suitable for
the calculation of the rapidity gap survival factors for the
different hard diffractive processes and to evaluate the soft
cross sections σtot, dσel/dt and σ

lowM
SD .

3.3 Survival factors

An essential ingredient in the prediction of the rate of
a particular diffractive process, is the calculation of the
suppression due to multipomeron exchanges.8 We assume
that the rapidity gap is large enough, so that it will be pop-
ulated by secondaries from soft rescattering; that is, in an

7 Note that in terms of a limited number of eigenstates φi,
we can consider only ‘low-mass’ proton excitations, within
a limited interval ofM2.
8 This is especially important for searches for new physics
signals in processes with tagged forward protons; see, for ex-
ample, [39–41].

inelastic soft interaction, there is a negligible probability
for a fluctuation with zero multiplicity within the large gap
interval. Then we can write the survival factor of the gap
with respect to the i–k soft interaction at fixed impact pa-
rameter b as exp(−Ωik(b)). This survival factor should be
averaged over the full set of diffractive eigenstates and over
the impact parameter b. If we do not detect the outgoing
protons, the survival factor caused by eikonal rescattering
is given by

S
2
=

∑
i,k

∫
d2b|api|2|ap′k|

2|Mik|2 exp(−Ωik(s, b))
∑
i,k

∫
d2b|api|2|ap′k|2|Mik|2

,

(17)

where |api|2 and |ap′k|
2 are the probabilities of finding the

partonic diffractive eigenstates i ≡ |φi〉 and k ≡ |φk〉 in
the two colliding proton states |p〉 and |p′〉, respectively;
see (11). |Mik|2 is the probability of producing the particu-
lar final system from the incoming eigenstates i and k. If
one of the outgoing protons is observed, or both, then we
have to average the amplitude and not the cross section.
For example, when both protons are tagged with pT = 0 we
have

S
2
=

∣
∣
∣
∣

∑
i,k

∫
d2b|api|2|ap′k|

2Mik exp(−Ωik(s, b)/2)
∑
i,k

∫
d2b|api|2|ap′k|2Mik

∣
∣
∣
∣

2

.

(18)

The survival probability, S2, can depend on the types
of active partons j and the value of their momenta, xj and
k⊥j . In a multichannel eikonal model, with a few eigen-
channels, we expect the channel with the smallest cross sec-
tion to contain mainly valence quarks with larger x, while
the channels with larger cross sections will be due to sea
quarks and gluons, concentrated at smaller values of x [42].

4 Inclusion of high-mass diffraction

In the eikonal approximation the interaction of two diffrac-
tive eigenstates, φi and φk, was described by the opacity
Ωik corresponding to the two-particle s-channel irreducible
amplitude. This Ωik generates the complete two-particle
reducible amplitude Fik,

Fik(s, b) = 1− e
−Ωik/2 ; (19)

see (6). The connection between the irreducible amplitude
fik and the full amplitude Fik is illustrated in Fig. 2. The

Fig. 2. The connection between the full amplitude Fik and the
irreducible amplitude fik for scattering between the i and k
diffractive eigenstates
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Fig. 3. A ‘soft’ high energy interaction in which partons origi-
nating from the dissociations of the colliding protons overlap in
rapidity. The overlap illustrates the impossibility of describing
high-mass diffraction in terms of a pure eikonal (Good–Walker)
formalism. Note that the master equations that describe the
evolution of these ‘parton showers’ are introduced in Sect. 4.2

defect of the approach, in which the irreducible amplitude
Ωik ≡ fik of the ‘i–k’ interaction has been approximated
by a single pole in the complex angular momentum plane,
is that we are unable to separate the contribution com-
ing from events with a rapidity gap from those of com-
pletely inelastic multiparticle processes. Thus we are un-
able to identify high-mass diffractive dissociation. More-
over, if we try to describe high-mass dissociation in the
Good–Walker formalism we encounter the problem of dou-
ble counting when the partons originating from the disso-
ciation of the beam and ‘target’ initial protons overlap in
rapidities. These problems are well illustrated by the soft
interaction sketched in Fig. 3. In this section we discuss
how to treat high-mass diffractive dissociation.

4.1 The deficiency of the Schwimmer model

The usual way to include large mass M dissociation is to
include the triple-pomeron diagram as in Fig. 4. However,
the triple-pomeron coupling is not small, g3IP � gN/3 [15],
so to be consistent we have to sum up a series of more com-
plicated graphs like those in Fig. 5. As mentioned above,
if the size of one object “k” is much larger than that of
the other, “i”, then the major contribution comes from the
sum of fan diagrams with multiple interactions on k. This
is the so-called Schwimmer model [23]. In the Schwimmer

Fig. 4. The addition of the triple-pomeron diagram, which al-
lows for high-mass,M , diffractive dissociation

Fig. 5. The diagrams on the left-hand side constitute the
Schwimmer model. We also show a more complicated diagram

model9 the cross section becomes saturated at high energy,
that is, at high Y [23, 43–45]

σtot =
gigke

∆Y

1+ ε(e∆Y −1)
→ σtot =

gigk

ε
, (20)

where Y = ln s is the available rapidity interval and ∆ =
αIP (0)−1, and where the value of ε = g̃3IP gk/∆ fixes the
maximum saturation density that can be reached in the
Schwimmermodel. At the same time, largemass diffractive
dissociation is given by

M2
dσlargeMSD

dM2
=

gigk∆εe
∆(2Y−lnM2)

[1+ ε(2e∆Y − e∆(Y−lnM2)−1)]2

→M2
dσlargeMSD

dM2
=
gigk∆

4ε(M2)∆
, (21)

where the final expression applies asymptotically, when
2εe∆Y � 1. By comparing (20) and (21), we see that the
absorptive effects are much stronger in diffractive dis-
sociation than in the total cross section. Note the sec-
ond power in the denominator in (21) and note that
moreover the denominator contains 2 exp(∆Y ) rather
than exp(∆Y ). This reflects the well known fact that
the screening of the diffractive dissociation amplitude is
twice as strong as that for the elastic amplitude. Re-
call that (20) and (21), and the discussion in the fol-
lowing subsections, Sect. 4.2 and Sect. 4.4, are in 1+1
dimensions. Non-zero transverse momentum is introduced
in Sect. 5.
If, in the real world, we try to describe the total

cross section in terms of the Schwimmer model we obtain
a diffractive cross section, dσSD/dM

2, which is an order
of magnitude lower than that observed at the Tevatron. In-
deed, as was discussed in Sect. 2, the triple-pomeron vertex
cannot be too small. Even neglecting the screening cor-
rections, we need g3IP � 0.1. In particular, with g3IP /gN =
0.1–0.2 we find10 that the cross section dσSD/dxL is about
5 times smaller than that observed by the CDF collabora-
tion at the Tevatron. With a larger g3IP the “ε” term in the
denominator of (21) already becomes large for Tevatron
energies;O(1) for g3IP � 0.5. Moreover, from the rightmost
‘limiting’ expression in (21), we see that σSD is smaller for
larger values of g3IP . For larger g3IP = gN/2 we found that
saturation is quickly obtained. However, as seen in Fig. 6,
it is still possible to describe the total and elastic cross sec-
tion data. Here, to compensate for the strong absorption,
we need ∆ = 0.5. At the Tevatron energy11 this results in

9 For simplicity, we use the model in 1+1 space-time dimen-
sions. We therefore use the notation g̃3IP for the triple-pomeron
coupling in 1+1 dimensions in order to distinguish it from the
real triple-pomeron coupling g3IP .
10 The procedure that we use to include the transverse size of
the proton, and other practical details are described in Sects. 5
and 6.
11 The Tevatron data that we use here were collected at an en-
ergy

√
s= 1.8 TeV. For this reason we use a Tevatron energy of

1.8 TeV when we present our predictions.
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Fig. 6. The description of the pp total cross section in the
Schwimmer model

a diffractive cross section

(1−xL)
dσSD
dxLdt

= 0.2mb/GeV2 , for t= 0 , xL = 0.99 ,

(22)

which is orders of magnitude less than that measured by
CDF [46, 47].
Next, dσSD/dxL decreases with energy as s

−∆, since
for a fixed longitudinal beam momentum fraction, xL, car-
ried by the recoil proton,12 we haveM2 = (1−xL)s. More-
over, as discussed in [48], the strong absorptive effect im-
plied by the fan diagrams is not observed in the leading
neutron spectra obtained at HERA. So the Schwimmer
model is in contradiction with experiment.

4.2 Including more complicated multipomeron
diagrams – zero transverse dimension

For simplicity, we continue the discussion in 1+1 dimen-
sions and wait until Sect. 5 to introduce non-zero trans-
verse momentum. It is important to note that, besides
the triple-pomeron vertex, there are more complicated
multipomeron interactions; see Fig. 7. Indeed, it was pro-
posed [49–51] to sum diagrams with all possible (n,m)
configurations at each vertex with coupling gnm. The exact
values of the various gnm vertices are, of course, unknown.
In [49] Cardy proposed a beautiful way to study the asymp-
totic high energy limit, by assuming the analyticity of gnm
in the Rem, Ren≥ 0 semi-plane. However, to describe the
cross section at the energies available to experiment we
need to know the explicit form of the vertices. The simplest
possibility is to assume an eikonal form,

gnm ∝ gNλ
n+m−2 . (23)

12 That is, for a fixed rapidity gap, ∆η = ln(1/(1−xL)).

Fig. 7. A multipomeron vertex

Such a programme was carried out in 1986 [22] and led to
a rather reasonable prediction at the LHC energy.
Here we will consider the partonic interpretation of an

analogous approach. As mentioned above, for simplicity,
we first neglect the transverse dimensions. In terms of the
partonic evolution in rapidity space, the bare pomeron pole
contribution to the elastic amplitude f is generated by the
simple equation

df(y)

dy
=∆f(y) . (24)

This equation can be regarded either as the equation for
the single pomeron amplitude, or as the equation for the
parton density generated from either the beam i or the
target k. For definiteness, let us consider the partonic evo-
lution from the target k. Then (24) gives

f = g2ke
∆y , (25)

where ∆ corresponds to the intercept of the pole am-
plitude. That is,13 f ∝ sα−1, with α = 1+∆, so that
σ = g2k(s/s0)

∆, where gk is fixed by the initial condition,
namely the probability of the interaction at s = s0 – in
other words, by the parton density at y = 0, the beginning
of the evolution.
Here, at a low scale, it is impossible to say whether

a parton is a quark or a gluon. These degrees of freedom are
not well defined in the ‘soft’ regime.14 However, in a soft
high energy interaction, the parton may be considered as
a ‘small’ elementary object that mediates the process, in
the spirit of the original parton model [52, 53]. Thus, here,
by the partonic picture we mean the evolution of the par-
ton shower as shown in Fig. 8. We emphasise, that our ap-
proach goes beyond simply the probabilistic partonic inter-
pretation of the amplitude, but, more important, it allows
us to describe the actual evolution of the parton shower
through master equations of the form of (24) (or (26), (29)
and (30) below).
Indeed, according to (24), the ‘splitting function’ P ,

which specifies the probability of the emission of an ex-
tra parton c within the rapidity interval dy, is simply
P =∆. When we iterate (24) we generate a ladder-type
amplitude, which has exactly the structure of that con-
sidered in [54], but now in 1+1 dimensions. This is illus-
trated in Fig. 9, which produces an exchanged pomeron
(shown by the bold dashed line) with a ladder-type
structure.

13 Here, for fixed impact parameter, we use the same normali-
sation of the amplitude as in (3).
14 Nevertheless we hope that at larger scales our partons will
match smoothly with quark and gluons.
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Fig. 8. A typical parton shower

Fig. 9. The evolution of the elastic bare pomeron amplitude

A multipomeron contribution arises from the absorp-
tion of the intermediate s-channel partons c during the evo-
lution of f in y. In particular, the triple-pomeron diagram
in Fig. 4 means that parton c undergoes an extra rescat-
tering with the target parton k, as shown in Fig. 10 [53].
Allowing for many rescatterings, we have to sum over dif-
ferent numbers of ladders between partons c and k. Assum-
ing an eikonal form for the multipomeron–proton vertex, it
is natural to replace (24) by

df

dy
= f∆ exp(−Ω/2) , (26)

where the ‘opacity’Ω ≡ λf describes the transparency15 of
the target k. Since we are dealing with the elastic ampli-
tude f we use exp(−Ω/2) and not exp(−Ω); see (3). The
coefficient λ reflects the fact that parton c may be differ-
ent and have an absorptive cross section different from that
of the eigenstate i. The value of this parameter λ should
be tuned to describe the data driven by the triple-pomeron
vertex. Since the triple-pomeron vertex is relatively small,
we expect λ < 1. Indeed, as we have already discussed,
the HERA data on inelastic J/ψ production (with tar-
get proton dissociation) indicate that [15] g3IP /gN ∼ 0.3.
In the limit λ→ 0, we come back to the pole amplitude
of (24). For non-zero λ, it is straightforward to check that
the asymptotic amplitude generated by (26) grows slowly
as

f =
2

λ
[ln(y∆)+ ln ln y+ . . . ] . (27)

This is very different from the Schwimmer model, which
only accounts for the triple-pomeron vertex. There we kept
only the first two terms in the decomposition of the expo-
nent in (26), so that the equation took the form

df

dy
=∆f − g̃3IPf

2 . (28)

15 Since the opacity depends on the type of incoming particle,
it is natural to introduce a parameter λ which reflects the differ-
ence of the opacity of the target felt by the intermediate parton
and the opacity felt by the incoming eigenstate i.

Fig. 10. The ladder structure of the triple-pomeron amplitude

In that case the value of f rapidly saturated, f → constant;
see (20) with σtot ∼ f . The crucial difference is that in the
perturbative (with respect to small g̃3IP ) calculation, the
right-hand side of (28) may even be negative for large f ;
while, after resummation of the multipomeron exchanges,
the right-hand side of (26) is definitely positive.16

In terms of Regge diagrams, (26) sums up the system of
fan diagrams in which any numberm of “lower” pomerons
couples to a fan vertex g1m, defined as in Fig. 7. In order to
include the rescattering with the beam i we replace (26) by

df(y)

dy
= f(y)∆e−(Ωk(y)+Ωi(y

′))/2 . (29)

The final term in the exponent is the opacity of the beam
i, which depends on the rapidity interval y′ = Y −y, with
Y = ln s. The equation for the opacity Ωi = λfi has the
analogous form,

df(y′)

dy′
= f(y′)∆e−(Ωi(y

′)+Ωk(y))/2 . (30)

Actually, this is the same equation as (29), but now evolv-
ing in the backward direction starting from the boundary
condition f(y′ = 0) = gi at y = Y .
The system of equations (29) and (30), with boundary

conditions f(y = 0) = gk and f(y
′ = 0) = gi, may be solved

by iteration [34–37]. Depending on the values of gi, gk and
∆, we usually need no more than 5–15 iterations to reach
an accuracy of 0.1%. That is, the forward evolution of the
amplitude f(y) in the ‘background’ field f(y′) gives the
same result, to 0.1% accuracy, as the backward evolution of
f(y′) in the ‘background’ field f(y). Once (29) and (30) are
solved, it is straightforward to simulate in a Monte Carlo
the development of the parton shower (29) in the known
external field Ωi.
At this stage, it is useful to have a pictorial illustra-

tion of the above equations. In terms of the diagrams of
reggeon field theory, (28) produces the set of fan diagrams
generated by the triple-pomeron vertex only. The first two
diagrams are shown in the left part of Fig. 5. On the other
hand, (26) produces an analogous set of fan diagrams, but
now the number of “lower” pomerons in any vertex is ar-
bitrary. Expanding the exponent on the right-hand side
of (26) leads to vertices g1m with m≥ 2. The factor 1/m!
which comes from the expansion of the exponent accounts
for the identity of the bare pomerons.17 The set of fan dia-

16 For the case of a nuclear target k, an equation analogous
to (26) was discussed in [55].
17 Strictly speaking, (26), (29) and (30) correspond to vertices

with gnm ∝ nmλ
n+m−2.
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Fig. 11. Symbolic representation of the sum of multipomeron
diagrams generated by a (26), b (29), c (30), and d the system
of equations (29) and (30)

Fig. 12. The symbolic description of diagrams appropriate for
diffractive dissociation of the eigenstate i with a rapidity gap in
some interval (0, y). The notation (a)→ (b,c)→ (d) refers to a
development analogous to that indicated in Fig. 11. The cross
on the lower line indicates that the eigenstate k is on-shell

grams generated by (26) is shown symbolically in Fig. 11a
as a shaded triangle. Now we turn to (29) and (30). The
factor exp(−Ωi(y′)/2) in (29), which describes the rescat-
tering of the intermediate parton c with beam i, generates
vertices like gn1 and leads to more complicated diagrams,
one of which, for example, is shown by the last diagram in
Fig. 5. If we expand both exponents exp(−Ωk(y)/2) and
exp(−Ωi(y′)/2), then we obtain diagrams with a full set of
vertices gnm. In Fig. 11b, the effect of the absorptive factor
exp(−Ωi(y′)/2) is shown by a dashed line. The opacity Ωi
is generated by (30), which corresponds to Fig. 11c. Solv-
ing the system of equations (29) and (30) we obtain the full
amplitude, which we show symbolically as the light-shaded
rectangle in Fig. 11d.
Note that the fan diagram of Fig. 11a contains a contri-

bution with a rapidity gap in some interval (0, y), as shown
in Fig. 12a. An analogous rapidity gap can be found in the
whole amplitude Fig. 11d. We show this contribution in
Fig. 12d, where the light-shaded ‘rectangles’ correspond to
total amplitudes generated by (29) and (30). Note that in
each ‘rectangle’ in Fig. 12d we account for the absorptive
effect exp(−Ω/2) of the corresponding external field gen-
erated in the whole rapidity interval (0, Y ), and not just in
the sub-intervals (0, y) or (y, Y ) occupied by the particular
‘rectangle’.

4.3 Comments on the final state

Recall that in the evolution equations for the amplitude,
given in (26), (29) and (30), we include the absorptive fac-
tor exp(−Ω/2) and not exp(−Ω). That is, we work with
the forward amplitude ImT = 1− e−Ω/2, which at each
step of the evolution (in rapidity y) includes all possible
processes – both elastic and inelastic interactions with
cross sections σel = (1−e−Ω/2)2 and σinel = 1−e−Ω, where
σtot = 2 ImT = σel+σinel; see (6)–(8).

Strictly speaking using the AGK cutting rules [56], to-
gether with the vertices gnm ∝ nmλ

n+m−2, we would obtain
a parton–target elastic cross section σel = (1− e−Ω/2)×
(Ω/2)e−Ω/2, instead one of the form (7). On the other
hand, the AGK rules were not proved for the general case
of gnm with n+m> 3. Here we prefer to adopt the partonic
basis and to calculate the elastic cross section following the
usual relation (7).
As usual the inelastic processes includes both single-

ladder exchange, as well as multiple interactions with
a larger density of secondary partons. Analogous to the
rescattering of a fast hadron in a heavy nucleus, we assume
that the probability,wN , of events with partonmultiplicity
N times larger than that in a single ladder, is given by

wN =
ΩN

N !
e−Ω . (31)

Unfortunately we cannot use this probability wN liter-
ally to describe the multiplicity distributions of secondary
hadrons.
First, the distribution is affected by coherence effects.

For example, in quark–quark scattering, mediated by the
exchange of N t-channel gluons, the colour flow between
the quarks cannot exceed the flow corresponding to octet
(i.e. one-gluon) exchange. Thus, for low pT, when allN glu-
ons act coherently, we expect the multiplicity of hadrons
produced by hadronisation of the (N -gluon) colour tube to
be the same as that for one-gluon exchange [57]. Secondly,
a non-negligible fraction of the final hadrons may be pro-
duced via the fragmentation of minijets. These processes
are beyond the ‘pure soft’ approach, used in the present
paper. Therefore, below we concentrate on processes with
rapidity gaps.

4.4 High-mass diffractive dissociation

We evaluate the cross sections for the three processes
shown in Fig. 13, that is, for the dissociation of a single
proton (SD), for the dissociation of both incoming protons
(DD) and for the central production of a system of massM
separated from the outgoing forward protons by rapidity
gaps (DPE). In naive simplified models the latter process

Fig. 13. The cross sections of these three high-mass diffractive
processes are calculated in this paper. The processes are a the
dissociation of a single proton, b double dissociation (DD) and
c central production (DPE). The shaded rectangles represent
the interactions within the rapidity gaps and are the result of
complicated multipomeron effects; see Fig. 11
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is called double-pomeron exchange. In reality, the rapidity
gaps shown as shaded ‘rectangles’ in Fig. 13 are the re-
sult of complicated multipomeron effects; see Fig. 11. The
results for the cross sections calculated in this paper corres-
pond to rapidity gaps with ∆y > 3.

The cross section for single-diffractive
dissociation, σSD

We consider the diffractive dissociation of the beam par-
ticle i into a system of large mass M that occupies the
rapidity interval from Y to y. It arises from the elastic
scattering of an intermediate parton c on the target k; see
Fig. 14. This elastic cross section,

σ = (1− e−Ω/2)2 , (32)

arises from the absorption e−Ω of parton c as a conse-
quence of the solution of the unitarity equation (2) for
parton c; see (7). In this way we obtain a process with a ra-
pidity gap in the interval (0, y). The resulting cross section
for single-diffractive dissociation is

dσSD
dy′

= (1− e−Ω/2)2∆e−(Ωk+Ωi)/2fi(y
′)S2 , (33)

with y′ = Y − y = lnM2. It is proportional to (i) the
probability to find parton c in the interval dy′, that is,
∆e−(Ωk+Ωi)/2 of (30); (ii) to the amplitude fi(y

′) of the
parton c–beam i interaction; (iii) to the gap survival factor
S2, that is, the probability S2 = e−f(Y ) to have no addi-
tional i–k rescattering; and (iv) to the elastic c–k cross
section (1− e−Ω/2)2. The opacityΩ that drives this elastic
amplitude is the opacity of the target, Ωk(y).

The cross section for double diffractive
dissociation, σDD

Double diffractive dissociation (DD) can be calculated in
an analogous way. Here we have to consider the ‘elastic’
scattering of two intermediate partons, say parton c at
y = y1 with y

′ = Y −y1 and parton d at y = y2 < y1 with
y′ = Y −y2, see Fig. 15. The corresponding opacity can be
calculated as the difference between the beam opacities at
y = y2 and y = y1:

δΩ =
Ωi(Y −y2)−Ωi(Y −y1)

Ωi(Y −y1)
=
Ωi(Y −y2)

Ωi(Y −y1)
−1 . (34)

Fig. 14. The symbolic diagram for (33) that describes the
single proton diffractive dissociation process pp→X+p. The
origin of the various factors in (33) are indicated

Fig. 15. The symbolic diagram for (36) that describes the dou-
ble diffractive dissociation process pp→X+X′. The origin of
the various factors in (36) are indicated

The denominator, Ωi(Y − y1), is the probability that an
additional opacity δΩ is generated by the branch that con-
tains the parton c. Alternatively the same quantity δΩ can
be calculated from the target side:

δΩ =
Ωk(y1)

Ωk(y2)
−1 . (35)

After the system of equations (29) and (30) is solved,
both expressions give the same result, as may be checked
numerically.
The differential cross section for double dissociation is

d2σDD
dy1dy2

= (1− e−δΩ/2)2∆e−(Ωk(y2)+Ωi(Y−y2))/2

×∆e−(Ωk(y1)+Ωi(Y−y1))/2fi(Y −y1)fk(y2)S
2 ,
(36)

as illustrated in Fig. 15. The amplitude (1− e−δΩ/2) de-
scribes the exchange of pomerons between partons c and d.
In this way we allow for pomeron loop diagrams like
those shown in Fig. 16. The factor 1/n!, which arises
in the expansion of the exponential e−δΩ/2, accounts
for the identity of the pomerons arising in elastic c–d
scattering.
Double diffractive events, with a rapidity gap in the

interval (y2, y1), may also come from two simultaneous
single-dissociation interactions: one with a gap in the
interval (0, y1) and the other with a gap in the inter-
val (y2, Y ). This contribution to the DD cross section is
given by

d2σ
(SD∗SD)
DD

dy1dy2
= Ii(y1)Ik(y2)S

2 , (37)

Fig. 16. Pomeron loop diagrams occurring in double-diffractive
dissociation
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where

Ii(y) = fi(y
′)(1− eΩk(y)/2)2∆e−(Ωk+Ωi)/2 , (38)

Ik(y) = fk(y)(1− e
Ωi(y

′)/2)2∆e−(Ωk+Ωi)/2 (39)

are the probabilities of single dissociation (before the ab-
sorption), see (33), and y′ = Y −y.

The cross section for central DPE production, σDPE

We can also calculate the cross section for the central
DPE production of the process shown in Fig. 13c. The
central system has a mass given by M2 = ξ1ξ2s, where
ξi = (1−xiL) is the energy loss of the incoming proton i.
In comparison with the cross section of double dissociation
of (36), where we consider the elastic scattering of the pair
of intermediate partons c and d, with rapidities y1 and y2,
now we have the inelastic c–d interaction accompanied by
the elastic scattering of parton d on the ‘target’ k and par-
ton c on the beam i. Thus the cross section is given by

d2σDPE
dy1dy2

=EkEiS
2 fk(y1)

fk(y2)
, (40)

with

Ek = (1− e
−Ωk(y2)/2)2∆e−(Ωk(y2)+Ωi(Y−y2))/2 , (41)

Ei = (1− e
−Ωi(Y−y1)/2)2∆e−(Ωk(y1)+Ωi(Y−y1))/2 ,

(42)

where the Ei and Ek are the probabilities that the par-
tons c and d participate in elastic interactions (multi-
plied by the probabilities to find these partons in the ra-
pidity intervals dy1 and dy2, respectively). The rapidi-
ties are Y −y1 =− ln ξ1 and y2 = − ln ξ2. The last factor
in (40) describes the probability that the c–d interaction
produces the central system of mass M ; in other words
the factor (1− eΩk(y2)/2)2 in (42), which corresponds to
elastic scattering, replaces the factor fk(y2) in the whole
amplitude.

Asymptotic behaviour of diffractive dissociation

At very high energies, Y = ln s� 1, the whole irreducible
amplitude given by (29) and (30) increases slowly:

f �
1

λ
ln(Y ∆) ; (43)

see (27). On the other hand, the cross sections for single-
and double-diffractive dissociation,

σSD ∼
1

λ
(∆Y )−1/λ , σDD ∼

1

λ2
(∆Y )−1/λ , (44)

decrease as (∆Y )−1/λ, due to the behaviour of the gap
survival factor S2 = e−f ∼ (∆Y )−1/λ. In the product
∆e−(Ωi+Ωk)/2fi ∼ 1/λY , the factor Y in the denominator
is compensated by the size of the available rapidity inter-
val,
∫
dy1 ∼ Y .

5 Accounting for the size of the colliding
hadrons

Coming to the real 4-dimensional world, we may exploit
the fact that the slope of the bare pomeron trajectory
needed to describe the elastic pp data (α′ � 0.1 GeV−2) is
very small in comparison with the slope of the proton form
factor, B0 � 2.5GeV−2. That is, the size of the pomeron
is much less than the size of the proton. Thus we may
use the “heavy pomeron approximation” [58], solving the
system of equations (29) and (30) written in zero trans-
verse dimensions, but with initial conditions gk(bk) and
gi(bi), which depend on the position of an effective heavy
pomeron with respect to the centre of the beam and target
protons in impact parameter space.
The pp impact parameter is b = bk−bi, where here

and below, the vectors lie in the 2-dimensional transverse
plane. In b-space the input conditions for fi are given
by the usual Fourier transform of the proton–pomeron
vertex βi,

gi(bi) =

∫
d2q

(2π)2
βi(q

2) exp(iq ·bi) , (45)

and a corresponding identical equation for gk. The whole
irreducible amplitude f̂ik, which should be used to calcu-
late the multichannel eikonalΩik of Sect. 3.2, is given by

f̂ik(Y,b) =

∫
d2bk d

2bifik(Y ;bi,bk)δ(bk−bi−b) ,

(46)

with

fik(Y,bi,bk) = fk(y = Y,bk,bi)gi(bi)

= fi(y
′ = Y,bi,bk)gk(bk) . (47)

We keep both the arguments bk and bi, since, at each
impact parameter b, we need to know the parton den-
sities in both the beam and target protons. Indeed, the
parton density fk(y) obtained from the evolution (29) of
the target partons depends not only on the impact pa-
rameter inside the target proton, bk, but also on that for
the beam proton through the external ‘background’ field
Ωi(y

′) in (29), bi. In terms of f̂ik(Y,b), the total cross sec-
tion takes the form

σtot = 2

∫
d2b(1− e−f̂ik(Y,b)/2) ; (48)

see (3) and (6). This completes our discussion of the elastic
amplitude fik.
To calculate the high-mass contribution to σSD we just

have to replace fik in (46) by (33) for the ‘local’ (that is
fixed b) contribution to σSD. The cross section takes the
form

dσSD
dy′

=

∫
fi(y

′)(1− e−Ωk/2)2∆e−(Ωk+Ωi)/2

×S2(b)d2bkd
2bi , (49)
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with y′ = Y −y = lnM2. In terms of the (experimentally
measured) longitudinal momentum fraction xL of the lead-
ing proton, we have dy′ = dxL/(1−xL). In (49), the
eikonal gap survival factor S2 depends on the pp impact
factor b= bk−bi, and the dependence of fi and fk on the
b is implicit. Note that now the factor S2 accounts for the
possibility of rescattering at any point in the b-plane. That
is,

S2(b) = exp(−f̂ik(Y, b)). (50)

The cross section of double diffractive dissociation is
given by an expression analogous to (49), but in which now
the integrals have integrands given by (36) and (37). How-

ever, in the σ
(SD∗SD)
DD contribution of (37) we have to ac-

count for the possibility that the two simultaneous ‘single
dissociations’ Ii and Ik may take place at different impact
parameters. That is, we add the contribution

d2σ
(SD∗SD)
DD

dy1dy2
=

∫
d2bS2(b)Îi(y1,b)Îk(y2,b) , (51)

where, in analogy to (46),

Îj(y,b) =

∫
d2bk d

2biIj(y;bi,bk)δ(bk−bi−b) , (52)

with j = i, k. The DPE cross section for central produc-
tion is of the same form as (49), but with (40) as the
integrand.
We emphasise that everywhere in this section we are

not dealing with the original proton beam and target,
but rather with the Good–Walker diffractive eigenstates
i, k ≡ φi, φk. Note that in this way we account for any
low-mass intermediate states, that is, we include all pro-
cesses of the type pp→X+p, pp→X+N∗, . . . Finally
we take the sum over the different eigenstates as described
in Sect. 3.
In terms of reggeon field theory, the exponential fac-

tors exp(−Ω/2) create a very complicated system of mul-
tipomeron exchange diagrams. However, as was mentioned
in Sect. 3.1, actually the physical interpretation of such fac-
tors is simply the probability that no inelastic scattering
occurs. Therefore, in terms of the parton approach, the
equations generate only simple ladder diagrams, like Fig. 9
or Fig. 10, modified so that the probability (or splitting
function) to produce a new parton (like c) is reduced by
the ‘survival probability’ of the parton in the background
fields.
Now let us calculate the double differential diffractive

cross section, d2σSD/dy
′dq2T, for pp→X+ p, where qT

is the transverse momentum of the recoil proton. To do
this we have to perform the Fourier transform of the pp→
X+p amplitude with respect to the impact parameter bk,
that is,

d2σSD
dy′dq2T

=

∫ ∣∣
∣
∣

∫ √
fi(y′)(1− e−Ωk/2)2∆e−(Ωk+Ωi)/2S2(b)

× eiqT·bk d2bk

∣
∣
∣
∣

2
d2bi
4π
. (53)

6 Practical details of the model

Before we present the numerical results, it is convenient to
list further details of the model.

• The low-mass excitations are included in the Good–
Walker formalism (see Sect. 3). Therefore, to avoid
double counting they should be omitted from the irre-
ducible amplitude fik. Hence, we introduce a thresh-
old y0 and start (finish) the rapidity evolution of (29)
and (30) at y = y0 (y = Y − y0). We choose y0 = 2.3,
a value that is often used in Regge field theoretic cal-
culations, and which effectively accounts for the next-
to-leading log corrections to the BFKL equation [48,
59–64]. Such a cut means that the low-mass dissocia-
tions with M � 2.5 GeV are accounted for within the
Good–Walker eikonal formalism, while larger masses are
described in terms of multipomeron diagrams.

• We consider two versions of the proton wave function, or,
rather, of the φi–pomeron coupling βi(t):

(A) βi(t) = βi(0)V (t) , (54)

(B) βi(t) = βi(0)V (tβi(0)/〈β(0)〉) , (55)

where in the first version, each component i has the
same form factor, whereas in the second version the
form factor of a component with a large cross section
(large βi(0)) is steeper than that for a component with
a smaller cross section. In case (A) each component has
the same transverse size, and a larger cross section arises
from the larger parton density. In version (B) the max-
imum parton density (which occurs at b= 0) is the same
for all components, and a larger coupling is caused by
a larger transverse size.

• The form factor of the φi–pomeron vertex is taken to
have the form

V (t) =
eat

(1− t/a1)2
. (56)

We take a � 0.1GeV−2 in the exponent in the numera-
tor. It is introduced solely to provide better numerical
convergence of the Fourier transform (45).

• The dispersion γ2 of the coupling, (15), is fixed by
the experimental data on low-mass diffractive excita-
tions. The analysis of the existing fixed target data re-
quire σlowMSD /σel � 0.3 [5, 65]. This value is consistent
with the CERN ISR measurements of the excitations
into particular channels (Nπ,Nππ,ΛK, . . . ) with M <
2.5GeV [66–70] and corresponds to18

σlowMSD � 2mb at
√
s= 31GeV . (57)

On the other hand, in [71] the cross section extracted
from measurements in the region M2/s < 0.01 was
σlowMSD � 4mb for s � 1000GeV2. However, in this ex-
periment the momentum resolution ∆M2 was compa-
rable to the whole size of the xL interval, ∆xL = 0.01.

18 Here and in what follows, the value of σSD accounts for dis-
sociation of both colliding particles.
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Thus the quoted value, σlowMSD � 4mb, includes some
contribution from masses larger than 2.5 GeV and, more
important, may also contain some admixture of elastic
events. In order to study the possible effect of a larger
cross section than (57), we repeat the entire analysis
with σlowMSD � 3 mb. (A value just below 3mb was also
measured in [72–74].) Thus we will consider four ver-
sions of the model, which we denote by B2, B3, A2
and A3, where the letter A or B corresponds to the
choice of couplings given by (54) or (55), and the num-
ber 2 or 3 refers to σlowMSD in mb for s� 1000GeV2.

• For both the n= 2 and n = 3 channel eikonals we take
a simplified and extreme decomposition of the proton
wave function:

|p〉=
1
√
n

n∑

i=1

|φi〉 . (58)

• The value of λ was defined in Sect. 4.2 (gnm ∝ λn+m−2,
which leads to Ω ≡ λf). It controls the probability of
high-mass diffractive dissociation. λ was tuned to be
consistent with the measured CDF data [46, 47] for
dσSD/dxLdt.

• From the theoretical point of view the “heavy pomeron
approximation” is not totally satisfactory. To satisfy
t-channel unitarity we need a non-zero slope of the
pomeron trajectory. At least, the two-pion loop con-
tribution to pomeron exchange should be included to
satisfy unitarity at the nearest t = 4m2π branch point.
However, this contribution turns out to be small. We
therefore set the slope α′ = 0, which provides reason-
able agreement with the data in the region of interest.
Since we take α′ = 0, we expect to underestimate the
elastic slope, Bel, at the LHC by up to 2%. Finally, the
intercept of the bare pomeron, αIP (0), is left as a free
parameter.

7 Results of the model

We fit the parameter a1 of (56), which specifies the form
factors of the Good–Walker eigenstates φi, and tune the
value of αIP (0) = 1+∆, in order to describe the energy de-
pendence of the measured total and elastic cross sections,
and dσel/dt in the CERN-ISR to Tevatron energy range.
Recall that the parameters γ2 and λ are specified by the
available single-diffractive data. A sample of the results are
presented in Figs. 1719 and 18.
Even without any additional tuning of the parameters,

the difference between the results of the two- and three-
channel eikonal models is rather small (less than about
5%–10%), once the dispersion γ2 of the couplings βi(0)
is fixed. So, below we present results just for the three-
channel case. The values of the parameters are listed in

19 We thank Asher Gotsman for pointing out an incorrect la-
belling of the SD and DD curves in our previous version of the
paper.

Fig. 17. The description of the total and diffractive dis-
sociation pp cross sections, obtained with a three-channel
eikonal, for model (B2), shown by the continuous curves, and
model (A3) shown by the dashed curves. The references to
the data are as in [10]. Also shown by the curve denoted
DL is the naive expectation for σtot obtained with a sim-
ple effective pomeron pole (and secondary Regge contribu-
tions) [1]. The curve marked “g3IP only” is to demonstrate
the importance of higher multipomeron contributions; see the
text

Fig. 18. The description of the elastic pp differential cross
section for models (B2) and (A3) shown by continuous and dot-
dashed curves respectively. The references to the data are as
in [10]
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Table 1. The values of the parameters in the various models;
where σ0 is the square of the average value of the couplings
βi(0): that is, σ0 = 〈βi(0)〉

2. By model (A2), for example, we
mean that we use version (A) of the φi–pomeron coupling, (54),
and we take σlowMSD = 2mb; see (57). The reason for the missing
entries for a1 for model (A) is explained in the text

Model ∆ λ a1 γ2 σ0 [mb]

(A3) 0.53 0.22 0.9 85
(A2) 0.40 0.30 0.42 47
(B3) 0.65 0.30 1.80 0.48 38
(B2) 0.55 0.33 1.55 0.275 33

Table 1. Note that the predictions at the LHC energy are
practically independent of the specific values of the vertices
βi(0) and of the chosen form of the t dependence of βi(t),
once we fix the value of low-mass dissociation, σlowMSD (that
is the dispersion γ2), and we satisfactorily describe the
present data on the elastic cross section dσel/dt. Actually
the t behaviour of the vertex V (t) is strongly constrained
by the data. If we choose a form different to (56), then after
tuning the parameters to describe the data, the behaviour
of V (t) turns out to be similar to that coming from (56).
Also note that since the cross section for low-mass disso-
ciation is screened by large rescattering effects, the value
of γ2 needed to describe the data is larger than the meas-
ured ratio σlowMSD /2σel; see (16). In particular, we require
a larger γ2 in models (A) than in models (B) to reproduce
the same ratio σlowMSD /2σel.
The next observation is that it proved difficult to de-

scribe the dσel/dt data using model (A), which has diffrac-
tive eigenstates of the same size. In fact we did not succeed
with ansatz (56). More complicated forms were required.
For model (A3) we took

V (t) =
e0.1t

(1− t/0.58)

4m2N −2.9t

4m2N − t
, (59)

while for model (A2) we have

V (t) =
e0.05t

(1− t/0.61)
, (60)

where t is in units of GeV2. Even then, though the descrip-
tions are reasonable, they are still not as good as those of
model (B); see Fig. 18.
In summary, the description of the total cross section in

Fig. 17 is satisfactory, except at the lowest energies consid-
ered, where we have to add the secondary Regge contribu-
tions, which are outside our analysis. The differential elas-
tic cross sections, shown in Fig. 18, are also well described.
At the bottom of the plot we show the cross sections for
the elastic scattering of the two individual eigenstates φ1
and φ3 at the LHC energy. For φ1, which has a large cross
section and a large transverse size, we see that the diffrac-
tive dip occurs at a rather small t, −t∼ 0.2GeV2. For the
component φ3, with the smallest cross section, there is no
dip for −t < 1 GeV2. However, after we take the sum over
all the φiφk contributions, we observe that the resulting

amplitude is structureless. Note that the interference is im-
portant. After the dip the φ1φ1 amplitude changes sign.
Indeed, in model (B2), for −t > 0.5 GeV2 the whole pp
dσel/dt becomes smaller than that due to the small size
component φ3 alone.
The best way to check the transverse structure of the

proton is to consider diffractive deep inelastic scattering
(DDIS), in particular the t-dependence of elastic J/ψ elec-
troproduction on the proton. Here the beam particle cor-
responds to a ‘heavy photon’, which acts as a small size
probe of the target. In our approach, we have simply to
use a beam particle eigenstate with a Good–Walker wave
function of small size and small absorptive cross section.
We then obtain the t distribution shown in Fig. 19. If Q2

is sufficiently large, the transverse size of the incoming
beam eigenfunction is much less than that of the target,
so the t distribution is independent of Q2. Even though in
model (B) we have components of quite different transverse
size, for example in model (B2) we have

R21 :R
2
2 :R

2
3 = 1.37 : 1 : 0.26 , (61)

the resulting t distribution is very smooth. It is of the form

dσJ/ψ
dt

∼ eBt with B = 4–5GeV−2 , (62)

in agreement with the H1 data [75–77].
In Fig. 20a we present the cross section for high-mass

single-diffractive dissociation in the kinematical region
measured by CDF [46, 47]. To describe the data at rela-
tively large ξ ≡ (1−xL), we add an xL-independent sec-
ondary Regge contribution, RRIP ,

dσ

dxLdt
=
dσIPIPIP

dxLdt
+50mb/GeV2 . (63)

Fig. 19. The t distribution predicted for diffractive J/ψ elec-
troproduction using models (B2) and (A3)
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Fig. 20. The behaviour of the cross sections for diffractive
a,b,c single dissociation and d central production obtained
for two of the models, namely (A3) and (B2). The four
plots are a the description of the CDF data [46, 47] for sin-
gle dissociation; b the energy dependence of dσSD/dtdy,
where y = − ln ξ with ξ = (1−xL); c the t-dependence of
dσSD/dtdxL; and d the y2 dependence of dσDPE/dy1dy2 for
ξ1 = 0.05 and 0.005, corresponding, respectively, to proton tag-
gers at 220 m and 420 m from the interaction point in the LHC
experiments

The last term was normalised to the large ξ data and
is almost negligible for ξ < 0.01. The energy dependence
for fixed ξ = 0.01 is shown in Fig. 20b. In Fig. 20c we
show the t-dependence of this cross section. Again, de-
spite the fact that model (B) has components of quite
different radius, the t-dependence is well described by
a single exponential with slope B � 8 GeV−2. This is com-
patible with the CDF measurement [47]. The major dif-
ference between the predictions of models (A) and (B) is
expected in the central diffractive cross section, dσDPE.
This is illustrated in Fig. 20d for two values of the for-
ward proton momentum fraction xL = 1− ξ, which cor-
respond to the acceptance of roman pots placed at 420m
(ξ = 0.005) and at 220m (ξ = 0.05) from the interac-
tion point in an LHC experiment [78, 79]. The predicted
values of the cross section have been obtained by in-
tegrating over the transverse momenta of both forward
protons.
The impact parameter shape of the elastic amplitude,

Tel, is shown in Fig. 21 for models (B2) and (B3). Since
both models are tuned to describe the dσel/dt data of
Fig. 18, it is not surprising that the resulting amplitudes
are close to each other. In fact, ImTel(b) should be regarded
as an experimentally measured quantity, up to a small cor-
rection caused by the real part of the amplitude. Indeed, we

Fig. 21. The impact parameter shape of the elastic amplitude
obtained from model (B) at the tevatron and LHC energies.
Two values, 2 and 3mb, of σlowMSD at s� 1000 GeV2, have been
used to fix the parameters of the model

have [80]

ImTel(b) =

∫ √
dσel
dt

16π

1+ρ2
J0(qb)

qdq

4π
, (64)

where q2 = |t| and ρ ≡ ReTel/ ImTel. From this point of
view the latest GLMmodel is completely inconsistent with
the data, as shown by the elastic amplitudes of Fig. 10
of [13].
Note that the energy dependence of Tel is very weak in

going from Tevatron to LHC energies. This is a common
feature of models that have a larger number of diffractive
eigenchannels and that include high-mass diffractive dis-
sociation. First, if we have many different eigenstates, the
part of the cross section that comes from the eigenstate
with the smallest cross section reaches saturation much
more slowly than the other components.20 Next, once we
include the triple- (andmulti-) pomeron vertices we change
the approach to saturation from the eikonal form,

T = 1− e−Ω/2 , (65)

to the power-like behaviour of the type

T =
εΩ

1+ εΩ
; (66)

see, for example, the Schwimmer formula given in (20).
Here we have Ω = β2e∆Y = β2s∆.
As we described in Sect. 3.3, the rapidity gap survival

factor caused bymultichannel eikonal rescattering depends
on the structure of the matrix elementMik. In Fig. 22 we

20 This observation was also noted in [13, 14].
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Fig. 22. The impact parameter behaviour of the rapidity gap
survival factor S2 averaged over the diffractive eigenstates
φi. Two assumptions are made about the matrix element
for producing the system from eigenstates i, k, that is, the
amplitudeMik in (18). First,Mik ≡M, for which Higgs pro-
duction via γγ fusion is an example. Second, Mik ∝ βiβk,
for which pomeron–pomeron fusion is an example. In each
case the results are shown for four versions of the model:
(A2), (A3), (B2) and (B3). Here the value shown for S

2
(s, b)

is equivalent to exp(−Ω(s, b)) in the case of a one-channel
eikonal. It is the gap survival probability in an interac-
tion with fixed proton–proton impact parameter b. To get

the complete survival factor S
2
, as given in either (17)

or (18), we must also average S
2
(s, b) over b with a weight

given by the b-dependence of the matrix element M(b).
For example, if, as in (69), M(b) ∝ exp(−b2/4B), then the

full S
2
=
∫
d2bS

2
(s, b) exp(−b2/2B)/2πB

present the impact behaviour of the survival factor aver-
aged over the diffractive eigenstates for two different as-
sumptions on Mik. First we assume that Mik does not
depend on the particular eigenstate, that is Mik ≡M.
An example is the exclusive production of a Higgs bo-
son via γγ fusion. The probability to emit a photon is
given just by the electric charge of the incoming state,
and therefore is the same for each φi. The correspond-
ing curves are denoted by γγ→H on Fig. 22. The pre-
dicted S2(b) is approximately model independent. An-
other possibility is to assume thatMik ∝ βiβk, which cor-
responds to Higgs production by pomeron–pomeron fu-
sion. The corresponding curves are denoted IPIP →H in
this case. Here we have a smaller S2(b), since the larg-
est contribution comes from the diffractive component
with the strongest absorption. Evidently the models with
the larger σlowMSD give a smaller S2(b) due to the larger
contribution of the excited (N∗) states to the absorptive
correction.

8 Conclusions

We present a ‘new generation’ model for soft high energy
hadron interactions, which includes a whole series of mul-
tipomeron vertices. Of course the vertices corresponding to
the interactionsofmanypomeronsarenotknown.Therefore
such amodelmay contain an infinite number of parameters.
Tomake progresswe have assumed an eikonal-like form,

gnm ∝ λ
n+m−2 , (67)

for the m→ n pomeron coupling. We emphasise that this
assumption is much more reasonable than the assump-
tion gnm = 0 for n+m> 3; that is, keeping only the triple-
pomeron coupling g3IP . In fact, if we were to neglect all the
higher pomeron vertices and keep only g3IP , then we would
obtain a much stronger absorption. Indeed, the curve de-
noted ‘g3IP only’ in Fig. 17 was calculated with exactly the
same values of the parameters as in the full model (B2),
and it demonstrates almost complete saturation starting
already at the Tevatron energy. This illustrates the import-
ant role of the higher multipomeron vertices.
Another argument in favour of our approach is that it

has a ‘transparent’ partonic interpretation. All the multi-
pomeron interactions are collected in the exponential fac-
tors e−(Ωi+Ωk)/2, which describe the absorption of inter-
mediate partons during the evolution of the parton cas-
cade; see (29) and (30).
The main goal of this paper was to formulate a new and

consistent approach to high energy soft hadronic interac-
tions. However, it is informative to check that the approach
is compatible with the present data. We found that already
with a minimum number of parameters (see Table 1), all
versions of the model can be tuned to give a reasonable de-
scription of the available data on soft hadronic interactions
in the CERN ISR-Tevatron energy range, and to give simi-
lar predictions for the LHC energy. The reason is that the
energy behaviour of the amplitudes is very smooth; there
are no thresholds and everything depends on ln s, which
does not change much in going from the Tevatron to the
LHC energy. Nevertheless, an important prediction of the
model is the relatively low value of the total cross section
expected at the LHC: σtot � 90mb. This is an inescapable
consequence of the absorptive corrections caused both by
the low-mass intermediate states in eikonal rescattering
and the high-mass excitations described by multipomeron
interactions.21 The prediction for σtot is still compatible
with the cosmic ray values [82, 83], although it lies below
the central cosmic ray expectations.
Another example of a very flat energy behaviour is that

shown for dσSD/dxL in Fig. 23. We see that this single-
dissociation cross section changes very little22 in going

21 A similar value of σtot was found in a simple two-parameter
phenomenological analysis [81]. However, high-mass diffraction
is not embodied in the parametric form and much less diffrac-
tive dissociation was predicted.
22 The growth of the cross section caused by the pomeron
interactions (∆ > 0) is compensated by stronger absorption,
that is, by the decrease of the gap survival factor S2.
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Fig. 23. The cross section dσSD/dxL for single dissociation
integrated over t at the LHC energy resulting from four models:
the continuous (dotted) curves are due to the B2 (B3) models,
while the upper (red) dotted and dot-dashed curves are for
models (A3) an (A2), respectively. For comparison we also
show by a dashed (blue) curve the cross section obtained from
model (B2) at the tevatron. The secondary Regge contribution
is included in the same way as in Fig. 20a; it is relatively very
small for (1−xL)< 10

−2

from the Tevatron (dashed curve) to the LHC (solid curve
for model (B2)). This quantity, which is interesting in its
own right, is of practical importance, since it governs the
rate of the so-called pile-up background to central exclusive
production processes, which are caused by the overlap of
two soft diffractive events simultaneously with a hard scale
event [41, 84].
Note also that the rapidity gap survival factor also de-

creases slowly with energy. For example, we can see from
the final entries of Table 2 that

S
2
(Tevatron)/S

2
(LHC)� 1.5 . (68)

This means that the present experiments at the Tevatron
can be used to check the theoretical expectations of the
models at the LHC energy.
Actually, the survival factor, which governs the rate of

events in a particular diffractive process, must be calcu-
lated by averaging the value of S2(b) with the forms of the
matrix elementsMik(b), as in (18). The values presented
in Table 2 assume, for simplicity, that23

Mik ∝ exp(−b
2/4B) . (69)

(Of course, in general, each amplitudeMik may have its
own slope Bik.) As examples, we choose the values B = 4

23 Note that [10] denotes the slope as 2b= B, where here b is
not to be confused with the impact parameter.

and 5.5 GeV−2 to be the same as in [10]. After we tune the
model to the soft data, we find that we still obtain almost
the same survival factors at the LHC energy; compare the
entries in Table 2 with those in the “CD(FPS)” column of
Table 1 of [10].
A sample of the results for the total and the diffractive

dissociation cross sections were presented in Fig. 17, and
for dσel/dt in Fig. 18. In Table 2 we also list the values of
the cross sections for models (B2) and (B3) at three ener-
gies, namely

√
s= 1.8 GeV, 14 TeV and 105 GeV. Note that

model (B) is favoured, for reasons explained below. We see
that with increasing energy the cross sections violate the
Pumplin bound [85],

σel+σSD+σDD < σtot/2 . (70)

However, this bound is only justified for low-mass dissoci-
ation described in terms of Good–Walker diffractive eigen-
states. (Actually the bound was originally proved for dis-
sociation on nuclei.) For the low-mass components of the
diffractive dissociation cross sections we see that there is no
contradiction with the bound.
An important ingredient of the analyses of soft high

energy hadron interactions are the data on diffractive dis-
sociation. The data that are available at present are frag-
mentary. No experiment has covered the whole kinematic
range of t and rapidity. Moreover, at low M and low t
it is hard to avoid contamination from elastic events. For
these reasons we prefer to compare the theoretical pre-
dictions with measurements of differential cross sections,
dσlowMSD /dt and d2σhighMSD /dtdM2, in regions where they
were actually observed, rather than with integrated cross
sections, σSD and σDD, which were obtained by extrapolat-
ing the data into unmeasured regions using some simplified
model.
In order to further constrain the parameters of the

model so as to obtain more precise predictions, it is import-
ant to make accurate measurements at collider energies,
of the single-diffractive dissociation cross section for low
masses, σlowMSD , and of its t-dependence, dσlowMSD /dt, and
of central diffractive production, d2σDPE/dy1dy2. The
latter two measurements will provide information on the
transverse sizes of the various diffractive eigenstates φi.
Such measurements can be performed at the LHC,24 for
example, in the TOTEM experiment [86].
We have considered two different models for the φi–

pomeron couplings: model (A), in which all the compo-
nents have the same size, and model (B), in which the sizes
differ; see (54) and (55). There are three observations that
appear to favour model (B). First, model (B) gives a some-
what better detailed description of the various data for
dσel/dt. Indeed, recall for model (A3) that we were re-
quired to choose a complicated form of the residue V (t)
to avoid a contradiction with the data. Second, model (B)
predicts σDD, which is in better agreement with the CDF
measurements.25 Third, model (A) requires a very large

24 We thank Risto Orava for a discussion of this issue.
25 CDF [87] have measured the cross section for double dis-
sociation with a rapidity gap ∆y > 3 enclosing y = 0 and find
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Table 2. The cross sections (in mb) predicted at the three energies using model (B2).
Also shown in brackets are the predictions for model (B3). The various components
of the single- and double-dissociation cross sections are also listed. The final entries
are the survival factors of the rapidity gaps for exclusive diffractive central production,
pp→ p+X+p, for two values of the slope B = 4 and 5.5 GeV−2. The expression for

σ
(SD∗SD)
DD is given in (37)

Tevatron LHC
√
s= 105 GeV

σtot 74.0 (73.9) 88.0 (86.3) 98.0 (94.3)
σel 16.3 (15.1) 20.1 (18.1) 22.9 (20.0)

σSD 10.9 (12.7) 13.3 (16.1) 15.7 (17.7)

σlowMSD 4.3 (6.0) 5.1 (7.0) 5.7 (7.9)

σ
highM
SD 6.5 (6.7) 8.1 (9.1) 10.0 (9.8)

σDD 7.2 (8.7) 13.4 (12.9) 17.3 (21.1)

σlowMDD 0.2 (0.5) 0.2 (0.5) 0.2 (0.6)

σ
highM
DD 4.5 (4.0) 9.3 (5.9) 11.7 (12.9)

σ
(highM∗lowM)
DD 2.1 (3.6) 2.9 (5.2) 3.8 (6.0)

σ
(SD∗SD)
DD 0.4 (0.7) 1.0 (1.3) 1.6 (1.6)

S
2
(B = 4) 0.027 (0.018) 0.017 (0.012) 0.013 (0.009)

S
2
(B = 5.5) 0.048 (0.032) 0.032 (0.023) 0.025 (0.018)

dispersion γ2 of the pomeron–φi couplings, which tends to
be incompatible with the data for soft reactions at fixed
target energies [65]. Nevertheless, at present we cannot
completely reject model (A), and so we have also presented
the results of this model to indicate the possible spread of
the predictions.
In all the models the value of λ was about 1/3, in agree-

ment with the evaluation of g3IP based on the HERA data
for γp→ J/ψX [15].
In our description of high energy ‘soft’ hadron–hadron

interactions we need to start with a rather large ‘bare
pomeron’ intercept: αIP (0) = 1+∆ with ∆ ∼ 0.5. Note
that this is considerably larger than the intercept ∆ ∼
0.08 of the naive effective Donnachie–Landshoff-type of
pomeron [1]. The reason is that it is necessary to com-
pensate the effects of the screening corrections originating
from the enhanced multipomeron diagrams. Recall that in
the present model we use the heavy pomeron approxima-
tion [58], that is, we set the slope of the pomeron trajectory
α′ = 0. Nevertheless this extreme choice is still consistent
with the data. The shrinkage of the elastic differential cross
section data of Fig. 18 is reproduced in our approach by
a stronger absorptive effect at low impact parameters with
increasing energy. Our preliminary estimates indicate that
a small value ofα′ (α′ � 0.05GeV−2) may possibly improve
the description of the data,26 but we find that a larger α′

∆σDD = 4.4±1.2 mb at 1.8 TeV and 3.4±1.1 mb at 630 GeV,
as compared to the predictions of ∆σDD = 4.4 mb and 3.7 mb,
respectively, of model (B2). Here ∆σDD denotes the portion of
the cross section for double dissociation coming from the kine-
matic region where it was actually measured.
26 Simultaneously, the inclusion of a non-zero α′ will result in
a smaller value of ∆.

Fig. 24. Typical final states that are included in the model:
a diagrams from multichannel eikonal rescattering, b diagrams
with and without a rapidity gap from enhanced multipomeron
interactions

(α′ � 0.05GeV−2) appears to be definitely ruled out, since
the main shrinkage of the elastic peak comes from absorp-
tive effects.
In summary, we have been able, for the first time,

to present a theoretically fully consistent description of
high energy soft hadron interactions. The procedure in-
corporates both a multichannel eikonal and multipomeron
interactions. In terms of reggeon field theory, it sums
up the eikonal diagrams in Fig. 2, together with the en-
hancedmultipomeron diagrams like those in Figs. 5 and 16.
In terms of final states these diagrams generate pro-
cesses with different densities of secondary particles. The
eikonal diagrams generate processes like those shown in
Fig. 24a, while the enhanced multipomeron diagrams may
generate processes with rapidity gaps, as well as those
with different densities of secondaries in particular ra-
pidity intervals as shown in Fig. 24b; see the discussion
in Sect. 4.3.
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